Матричные фары автомобиля - Автомобильный журнал
Trt-auto.ru

Автомобильный журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Матричные фары автомобиля

Как устроена матричная оптика: разбираемся на примере разработок компании HELLA

Постепенный переход на светодиодные источники света в автомобилях уже несомненная тенденция. Лампы накаливания в ближайшем будущем останутся уделом устаревших конструкций. А сейчас высокоэффективные и долговечные фары постепенно отвоевывают позиции у традиционных. В маломощных осветительных приборах светодиоды уже вытеснили конкурентов, а вот в области головного света сражение еще идет. И основное оружие светодиодов — матричная оптика конструкции Hella.

Просто заменить газоразрядный или галогенный источник света на светодиоды — идея не новая. Еще в 2008 году подобная система появилась на машинах Lexus LS, а сейчас построенная по тому же принципу головная оптика стала базовой на многих массовых автомобилях. Например, новый кроссовер Skoda Kodiaq оснащен ею в базовой комплектации, как и соплатформенный VW Tiguan. На базе подобной конструкции можно создать даже адаптивное освещение, и оно не будет ничем принципиально отличаться от использующего газоразрядные источники света. Но настоящий прорыв в эффективности дает только матричная светодиодная оптика.

Качественный головной свет автомобиля должен быть не только ярким, но и освещать исключительно необходимые зоны. Кроме того, не слепить встречных водителей, выделять важные объекты и при этом учитывать особенности человеческого глаза в отношении контрастности освещения и светотеневой границы.

Адаптивное головное освещение на базе единого источника света во многом решает эти сложности, но настоящий прорыв возможен только при использовании матричного освещения, когда за каждую зону отвечает отдельный источник света с регулируемой яркостью, а управляется система интеллектуальным модулем, способным распознавать объекты перед машиной и регулировать освещенность различных зон по ситуации. И именно по этому пути пошла компания Hella при разработке своих матричных светодиодных модулей адаптивного освещения.

Идея использовать много фар для освещения нескольких зон перед машиной в случае традиционных источников света сталкивается с габаритными ограничениями. И газоразрядные источники света, и лампы накаливания имеют достаточно крупные размеры рабочей области и требуют объемной оптической системы.

В случае со светодиодным освещением такая проблема не стоит. Если отказаться от использования сменных светодиодных модулей, то на небольшой плате можно разместить более 50 светодиодов, а поскольку их световой поток имеет явную направленность, то подобная матрица диодов отлично работает с компактной и простой оптической системой.

На практике в оптике Audi Matrix LED с 25 светодиодами адаптивного освещения они собраны в сменные модули по пять светодиодов в каждом, и еще пять модулей используются для статического освещения — ближнего света и статического бокового. В следующем поколении оптических систем Hella, которые с 2016 года устанавливаются на машины Mercedes, применяется целых 84 светодиода на единой плате.

Перспективная LED-оптика разработки Hella по-прежнему имеет «всего» 25 светодиодов на единой плате, но за счет использования в оптической системе фары проекционного LCD-дисплея с разрешением 30 тыс. пикселей с матрицей 100х300 число контролируемых зон освещения возрастает на порядок.

Сложность подобной конструкции легко недооценить. При тех же габаритах, что и у традиционной фары, внутри матричная LED-оптика и ее система управления устроены на порядок сложнее. Чтобы не быть голословным, рассмотрим конструкцию и ее возможности на примере оптики Audi Matrix LED для модели A8 в кузове D4 2013 года. Не самой новой, но зато одной из самых распространенных в России и имеющей много общего со светодиодной матричной оптикой других машин Audi. На следующих поколениях и для других моделей, скорее всего, будет уже лазерный источник света.

Возможности и конструкция

Помимо конструкции самой оптической системы, важную роль для работы адаптивного освещения играет конструкция системы управления. В случае с матричной оптикой самым важным датчиком системы является LiDAR — дальномер оптического диапазона, позволяющий системе управления получить предоставления обо всех источниках света и объектах в зоне освещения головной оптики. Так же используются данные навигационной системы, датчики скорости автомобиля, дождя и освещенности и данные ассистента ночного видения, если он есть в автомобиле. На основании этих данных блок управления может использовать один из множества режимов работы.

Дальний свет для движения по автомагистрали включается на основании данных навигационной системы. В этом случае система Matrix Beam включает узкий луч с максимальной дальностью освещения, наилучшим образом подходящий для ночных поездок на высокой скорости.

Ближний свет с классической асимметричной формой светового пучка использует 15 отдельных светодиодов в каждой фаре и включается в населенных пунктах. Может применяться отдельно от адаптивного освещения. Дальняя зона освещения реализуется отдельным набором светодиодов и может быть отключена для реализации туристического или всепогодного режима.

Туристический режим используется при движении в странах с левосторонним движением для машин, созданных для движения правостороннего. Он позволяет уменьшить асимметрию светового луча при включенном режиме ближнего света. Включается режим или автоматически, по данным навигационной системы, или вручную, через меню мультимедийной системы.

Конструкцию основной оптической системы фары можно увидеть на рисунке, но помимо нее в конструкцию входят также модуль указателя поворота (разумеется, со светодиодами), модуль охлаждения, причем со сменным вентилятором, и внутренняя проводка.

Статическое освещение боковой зоны предназначено для облегчения маневрирования и безопасного проезда перекрестков. Специальная секция фары освещает широкую зону спереди-сбоку от автомобиля. Включается автоматически при малой скорости и включении указателя поворотов, а также при угле поворота рулевого колеса более 50 градусов и скорости менее 60 км/ч. При проезде перекрестков срабатывает режим освещения для перекрестков, который включается по данным навигационной системы и скорости менее 60 км/ч.

Всепогодное освещение используется в условиях тумана и снегопада. В этом случае снижается мощность ближнего света и включается статическое освещение боковых зон. Включается режим вручную, кнопкой на панели, а ассистент дальнего света при этом отключается.

Динамическое адаптивное освещение работает на скорости более 60 км/ч вне населенных пунктов. Используется матрица из 25 светодиодов дальнего света, создающая 25 независимых сегментов. Система обеспечивает изменение направления луча света в зависимости от рельефа, не ослепляет встречный и попутный транспорт, снижает яркость в зонах расположения источников с высоким коэффициентом отражения — дорожных знаков и все другие функции адаптивности.

Маркирующая подсветка пешеходов срабатывает вне населенных пунктов и скорости более 60 км/ч, при наличии ассистента ночного видения. Секции дальнего света фар в направлении пешехода мигают, привлекая внимание водителя, а силуэт пешехода подсвечивается красным на дисплее приборной панели.

Помимо датчика LiDAR в работе системы задействованы блок управления корректора фар и блок комфорта бортовой сети. Причем самих корректоров у адаптивной оптики нет по двум причинам. На машинах с матричной LED-оптикой установлена пневмоподвеска и сама оптика имеет высокий запас адаптивности даже в режиме ближнего света за счет разделения зон. Так что блок управления в строгом смысле слова блоком коррекции уровня не является, просто располагается и подключен так же, как блок коррекции на машинах без этой системы. Помимо внешних блоков, используются три блока контроля в самой фаре.

Конструкция модуля охлаждения для светодиодной оптики крайне важна, так как от него зависит долговечность самих светодиодов и он включает в себя индивидуальные воздуховоды для каждой диодной сборки и множество датчиков. Вместо линз в этом поколении оптики используются зеркальные отражатели, имеющие повышенную стойкость к перегреву. Снаружи корпус закрыт общим герметичным колпаком.

В целом развитие автомобильного света уже семимильными шагами идет по пути внедрения интеллектуального светодиодного освещения, в чем корреспонденты журнала «Движок» убедились на практике, сравнив его с адаптивным биксеноновым. Ну а постепенное удешевление конструкции и ее повсеместное внедрение в ближайшем будущем позволит значительно улучшить ситуацию с освещением на дороге, а следовательно, и с безопасностью.

Что такое матричные фары?

Матричные фары или Matrix LED headlights впервые начали применяться на автомобилях от компании Audi, которая уже долгие годы является лидером в создании передовых устройств автомобильного освещения.

В 2013 году первые матричные фары были установлены на автомобиль Audi А8.

Эволюция фар

Новые современные технологии в ту или иную область промышленности не приходят сразу. Всему нужно время. Вот и в автомобилестроении прежде, чем на машинах начали появляется матричные фары, этому явлению предшествовала эволюция автомобильной оптики.

Многим водителям уже известны ушедшие в прошлое автомобильные фары с нитью накаливания, более современные биксеноновые и ксеноновые, которые еще применяются на автомобилях.

В наши дни революцию в системе освещения автомобиля сделали светодиодные устройства, но применимы они были сначала только в поворотниках или в ходовых и габаритных огнях.

Компания Audi решила пойти еще дальше и создать устройства освещения со светодиодами, работающее, как в дальнем, так и ближнем режимах работы главных фар.

Поэтому, если дать простое определение, что такое матричные фары, то это приборы освещения, которые полностью функционируют на светодиодах.

Расширяем значение

Стоит отметить, что под матричными фарами подразумевается не только головные устройства освещения.

Это целая система в которую входят матричные модули света:

  1. Дальнего;
  2. Ближнего;
  3. Ходовых огней;
  4. Габаритных огней;
  5. Указателей поворота;
  6. Дизайнерское освещение.
  1. Электронный блок управления;
  2. Система ночного видения;
  3. Датчики;
  4. Вентилятор с воздуховодом;
  5. Пластиковый корпус;
  6. Рассеиватель.

Все это работает в комплексе с видеокамерой, с системой навигации, приборами ночного видения, а также с датчиками: угла поворота руля, дождя, дорожного подсвета, датчика освещения и других.

Включение системы освещения по матричной технологии происходит автоматически при достижении автомобилем скорости:

  • В городе 60 км/ч;
  • За городом 30 км/ч.

Дальний свет фар

25 светодиодов образуют своеобразную матрицу, которая делится на 5 блоков. В каждом блоке размещены по 5 светодиодов.

Каждый светодиодный блок имеет свою систему охлаждения, в которую входит металлический радиатор, и отражатель (рефлектор с линзой).

Благодаря такой технологии стало возможным распределять свет одним миллионом комбинаций, что не возможно было сделать на других видах фар.

Ближний свет фар

Общий модуль имеет такое же устройство, как и у дальнего света фар. Расположен ниже первого, и тоже делится на светодиодные блоки, но уже меньших размеров.

Последний модуль

Последний модуль включает в себя светодиоды указателя поворотов, ходовых и габаритных огней. Всего в модуле установлено 30 светодиодов.

Все модули дизайнерски красиво оформлены, что придает фаре особую привлекательность.

Электронный блок управления

Электронный блок управления состоит из:

  1. Непосредственно из компьютерного блока (мозг системы);
  2. Входные устройства, которые дают исходную информацию;
  3. Исполнительные элементы, которые непосредственно выполняют нужные действия (дополнительные электронные устройства).

Как уже отмечалось выше к входным устройствам относятся приборы, благодаря которым блок управления получает:

  1. Внешние визуальные данные, как днем, так и ночью (видеокамера, прибор ночного видения);
  2. GPS координаты, наличие поворота, спуска или подъема, данные об общем рельефе местности (навигатор);
  3. Другие данные, которые получаются благодаря различным датчикам.

Блок управления принимает исходную информацию, обрабатывает ее, и в зависимости от дорожной обстановки, дает необходимые команды на исполнительные элементы.

Исполнительные элементы представляют из себя не те, привычные нам рычаги, тяги, тросики и т.д.

Это электронные приборы, которые перенаправляют полученный электрический сигнал от блока управления на определенные блоки светодиодов, тем самым регулируя поток света в нужном для водителя направлении.

Благодаря внедрению матричной технологии фар, стали доступны функции, которые трудно реализуемы на автомобилях с другими типами осветительных приборов.

К данным функциям относится:

  1. Изменение направления светового потока;
  2. Указатели поворотов, работающие в динамическом режиме;
  3. Распознавание автомобилей и автоматическое уменьшение интенсивности их освещения;
  4. Распознавание и подсвечивание пешеходов, животных, дорожных знаков;
  5. Самоприспосабливающееся освещение поворотов.

Распознавание автомобилей

Основное предназначение данной функции, это предотвращение ослепления водителей, которые движутся как в попутном, так и во встречном направлениях.

Как Вы уже догадались она работает в темное время суток и выявление автомобиля происходит с помощью специальной видеокамеры по его источникам света.

Однако на некоторых автомобилях впереди может стоять специальный радар, который также фиксирует расположение других машин на дороге.

При обнаружении транспортного средства система автоматически отключает те светодиоды, потоки света от которых максимально направлены на машину.

Чем ближе к Вам машина, тем больше направленных на нее светодиодов отключается, но при этом освещенность окружающего пространства остаётся неизменным.

Работа системы рассчитана на определение до 8 автомобилей, что вполне достаточно.

Распознавание людей, животных и знаков

Работа этой функции зависит от наличия в автомобиля системы ночного видения. Если на автомобиле уже стоят матричные фары при его покупке в автосалоне, то такая система уже должна быть предусмотрена заводом производителем.

Читать еще:  Как покрасить бампер автомобиля

Система ночного видения охватывает большой угол обзора, благодаря этому придорожное пространство хорошо просматривается. При выявлении людей или животных фары автоматически начинают мигать три раза в режиме дальнего света.

При выявлении дорожного знака, световой пучок фокусируется на нем, и проблема распознавания знака ночью отпадает сама собой.

Благодаря этому повышается внимание как водителя, так и пешехода, а это безопасность на дороге.

Самоприспосабливающееся освещение поворотов

Данное освещение еще называют адаптивным, так как оно адаптируется к каждому повороту автоматически, освещая его в большей степени.

Работа данной функции на прямую завязана на работу навигационной системы автомобиля.

Благодаря полученным навигационным данным, в которые входит место начала поворота, его продолжительность, радиус, и место его окончания, система автоматически начинает направлять поток света в нужное направление еще до того, как автомобиль начал входить в поворот.

Это в значительной мере повышает безопасность вождения ночью.

Динамический указатель поворотов

Благодаря матричным фарам, информативность указателей поворотов стала выше. При включении правого или левого поворота, 30 светодиодов с периодом в 150 мс, начинают последовательно мигать в направлении предполагаемого поворота.

Это выглядит не только информативно, но и красиво.

Чтобы матричные фары не вышли из строя, а вернее не перегорели светодиоды, в системе предусмотрен специальный воздуховод с вентилятором, который их охлаждает.

А крепкий герметичный пластиковый корпус надежно защищает их от внешних воздействий.

Пока технология матричных фар внедрена только в модели Audi A8.

Но так как она уже себя хорошо зарекомендовала, вскоре мы увидим матричные фары и на других моделей автомобилей и не только от Audi.

Ведь такую же технологию начала внедрять, и компания Opel, здесь она получила название «Matrix Beam». Как говориться, «немцы рулят».

Матричные фары автомобиля

Передняя оптика автомобиля способна сменить хоть и не весь его вид, но на 40% как минимум. Многие производители стали использовать светодиодную оптику на своих новых моделях. Расскажем о принципе работы и устройстве матричных фар.

Содержание статьи:

  • Модули ближнего и дальнего света
  • Строение оптики
  • Функции освещения
  • Видео

Ведущую позицию в области оптики держит компания Audi. Начиная с 2013 года Audi стали устанавливать матричную оптику или более известные как Matrix LED headlights на обновленную модель A8. Как утверждают инженеры компании, они поднимают уровень безопасности и облегчают управление автомобилем.

Изначально базу для матричной оптики положила компания Opel под названием Matrix Beam. В сравнении с обычной оптикой, матричные фары намного сложней. Она состоит из модуля ближнего и модуля дальнего света, так же в наличии есть дневные ходовые огни, габаритные огни и блок поворотов. В дизайнерском решении есть воздуховод с вентилятором для охлаждения механизмов и блок управления, на каждую фару свой.

Модули дальнего и ближнего света матричной оптики

Не смотря на сложность технологии, матричные фары вмещают в себе модуль дальнего и ближнего света. Каждый блок уникален по своему, как по строению, так и по управлению. Набор дальнего света матричных фар состоит из 25 светодиодов, объединенных по пять штук в группу. Совокупно они образуют матрицу дальнего света. Каждый блок матричный фар из пяти светодиодов имеет свой отдельный радиатор и отражатель. Благодаря такому инженерному решению, с помощью матриц реализовано порядка миллиарда разных комбинаций по распределению света.

Что ж касается модуля ближнего света, то он располагается под дальним светом. В его составе 15 светодиодов. Так же по пять светодиодов в блоке, но более слабые по мощности. В самом низу оптики разместились дневные ходовые огни, габариты и светодиоды указателей поворотов. Всего в таком блоке матричной фары можно насчитать 30 последовательных светодиодов.

Как устроена матричная фара

С наведенной информации видно, что в основе матричной фары лежат светодиоды и никаких других осветительных приборов. Действительно, такое строение выдаст намного больше света, чем ранее известные виды оптики.

Для лучшего вида элементы матричной оптики подчеркнули дизайнерским обрамлением в современном стиле. Все части оптики, включая блок управления и принудительную вентиляцию, помещены в пластмассовый корпус, который так же является основой и защищает от воздействия внешних факторов. Лицевую часть матричной фары закрывает прозрачный рассеиватель.

Становится понятно, что при наличии блока управления, вся система контроля и управления будет электронной, по традиции включая входные устройства и исполнительные элементы. В качестве входных устройств считаются различные датчики и видеокамера.

Видеокамера дает информацию о наличии других автомобилей на дороге. Таким образом, блок управления будет переключать дальний и ближний свет автоматически, регулировать угол и яркость оптики. Если же говорить о датчиках матричной оптики, то зачастую они используются от других систем, таких как угол поворота руля, датчик скорости автомобиля, датчик просвета дорожного, датчик освещения и датчик дождя. Именно эти датчики отвечают за комфортную езду и своевременное срабатывание различных систем.

Если же в автомобиле есть навигационная система, то в блок управления матричных фар будет использовать данные с маршрута, характер вождения автомобиля, рельеф дороги и местности, а так же учитывать проезд по населенным пунктам.

Главную роль в матричных фарах несет блок управления. Он обрабатывает информацию, полученную от входных устройств, и зависимо от полученных данных включает или выключает определенный ряд светодиодов. Новшеством стоит отметить то, что в матричной оптики не используются поворотные механизмы, как это было у ксеноновых фарах. Все функции выполняют благодаря статическим светодиодам и электронике матричных фар.

Разновидность функций освещения в матричной оптике

Чем сложней устроена конструкция оптики, тем больше функций она может выполнять. В матричной оптики насчитывают девять разновидностей функций освещения:

  • постоянный дальний свет;
  • освещение для автомагистралей;
  • ближнее освещение;
  • адаптивное освещение;
  • освещение на перекрестках;
  • освещение в любую погоду;
  • подсвечивание пешеходов;
  • адаптивное динамическое освещение;
  • динамический указатель поворотов.

Список не малый как видим, рассмотрим по каждому пункту отдельно, как устроен и принцип освещения.

Полисегментальный дальний свет позволит водителю двигаться с постоянным включенным дальним светом. В таком случае будут задействованы 25 отдельных светодиодов дальнего света. Так же будет задействована видеокамера, которая в темное время суток следит за встречными и попутными автомобилями по их свету фар. Как только обнаружен автомобиль, блок управления выключает часть светодиодов, которые направлены на движущийся автомобиль. Свободное пространство дороги будет освещаться в прежнем виде. Для уменьшения ослепления водителей яркость оставшегося блока матричной оптики будет уменьшена. По данным с паспорта, блок управления матричных фар одновременно может распознать до восьми автомобилей.

Свет для движения по автомагистрали основывается на полученную информацию с навигационной системы. Адаптивная система сужает конус дальнего света матричных фар, таким образом, чтоб максимально направить вперед и сделать удобной для других водителей.

Ближнее освещение имеет традиционную форму, средняя часть дороги освещается меньше, а вот боковая часть и обочина больше. При этом матричная оптика направляется вниз в зависимости от рельефа дороги и населенного пункта.

Адаптивный свет направлен на лучшее освещение машины спереди и сбоку во время выполнения маневра поворота. В таком случае система матричных фар в каждой из фар задействует по три светодиода, которые включаются или выключаются при повороте руля или срабатывании поворотов.

Освещение перекрестков предназначено для освещения перекрестков при приближении к ним. В этом случае для матричных фар так же задействована навигационная система, на основе информации которой и определяется перекресток.

Всепогодное освещение из самого названия говорит о том, что при движении в плохих погодных условиях (туман, дождь, снег) будет меняется качество освещения. Блок управления настроить светодиоды матричной оптики таким образом, чтоб избежать ослепления от своих же фар. Интенсивность светодиодов матричной фары будет меняться в зависимости от видимости.

Подсвечивание пешеходов в матричных фарах реализовано на высоком уровне. В случае обнаружения пешехода с помощью камеры и системы ночного виденья, на обочине или опасной близости от нее оптика будет троекратно сигнализировать дальним светом об этом. Тем самым предупреждать как водителя, так и пешехода.

Динамическое адаптивное освещение это предпоследний вариант в матричных фарах. Суть его работы направлена на освещение дороги во время поворота. Поворачивая рулевое колесо, яркость светового пучка перенаправляется с центральной части в сторону поворота. То есть одна часть светодиодов становится тусклее, другая ярче.

Динамический указатель поворотов матричных фар рассчитан на управляемое движение светодиодов в направлении поворота. Таким образом, 30 последовательных светодиодов оптики включаются последовательно с периодичностью в 150 мс. Со стороны это не только красиво выглядит, но и дает больше информации о том или этом маневре автомобиля.

Многие производители уже готовят свои автомобили под внедрение подобной технологии матричной оптики, но насколько это удастся, пока никто не может сказать. На данный момент компания Audi является единственным правообладателем подобной технологии в оптике и захочет ли она делиться с другими производителями остается под вопросом.

Видео о принципе работы матричной оптики и её строении:


Матричные фары: преимущества и принцип работы

Эволюция автомобильного освещения совершила грандиозный рывок с появлением матричных фар. На сегодняшний день – это самый прогрессивный и высокотехнологичный вариант автомобильной оптики. В чем преимущества матричных светодиодных фар и каков принцип их работы?

В области технологий освещения, ведущие позиции принадлежат Audi. Последней разработкой компании являются матричные фары, благодаря которым комфорт управления и уровень безопасности движения поднимается на качественно новый уровень.

Матричные фары от Audi объединяют в себе блок управления, воздуховод с вентилятором, дизайнерское обрамление, модуль габаритных огней, дневных огней и указателя поворота, и, конечно же, модуль ближнего света фар и модуль дальнего света фар.

Принцип работы матричных фар

Модуль дальнего света фар состоит из двадцати пяти светодиодов, которые объединены в группы по пять штук, образующих матрицу. Каждая группа обладает своим металлическим радиатором для охлаждения и своим отражателем. Благодаря матрице, из светодиодов реализуется порядка миллиарда разных комбинаций распределения света.

Что касается модуля ближнего света фар, то он расположен над модулем дальнего света. Он тоже состоит из светодиодов, которые разделены на несколько групп. В самой нижней части фары расположен модуль указателя поворота, габаритных огней и дневных ходовых огней. Включает модуль тридцать последовательных светодиодов.

Дизайнерское обрамление подчеркивает расположение модулей освещения. Кроме этого в матричной фаре размещен электронный блок управления. В целях принудительного охлаждения светодиодов, фары вооружены воздуховодом с вентилятором.

Матричные фары оснащены электронной системой управления, которая традиционно включает в себя блок управления, входные устройства и исполнительные элементы. Под входными устройствами подразумеваются GPS навигационная система, видеокамера и ряд датчиков. Навигационная система предоставляет водителю сведения о рельефе дороги (подъемы, спуски, повороты), а видеокамера дает информацию о прочих автомобилях, находящихся на дороге.

В «интересах» фар работает большое количество датчиков прочих систем автомобиля, таких как датчик угла поворота рулевого колеса, датчик дорожного просвета, датчик скорости движения, датчик дождя и датчик освещения. Информация, поступающая от входных устройств, обрабатывается электронным блоком управления, который в зависимости от ситуации на дороге активирует определенные светодиоды или дезактивирует их.

Поворотные механизмы в матричных фарах не используются подобно тому как они используются в ксеноновых фарах. Все рабочие функции матричных фар выполняются только с помощью статических светодиодов и электроники.

Преимущества матричных фар

Матричные фары реализуют ряд прогрессивных функций:

  • Обнаружение пешеходов и их подсвечивание;
  • Распознавание автомобилей, а также изменение светового луча;
  • Динамические указатели поворотов;
  • Адаптивное освещение поворотов.

Во время движения автомобиля по дороге в темноте, видеокамера обнаруживает попутные и встречные автомобили по их освещению. Сразу же по обнаружении автомобиля, системой управления включаются светодиоды, которые направляют на обнаруженную машину свет. Все оставшееся пространство дороги полностью освещается. При этом стоит отметить, что чем ближе обнаруженный автомобиль, тем сильнее включаются светодиоды. Однако при этом ослепление водителя едущего навстречу транспортного средства полностью исключено. Одновременно матричные фары способны выявлять до восьми машин.

Кроме автомобилей матричные фары могут обнаруживать в темноте животных и пешеходов, причем как тех, что находятся на дороге, так и тех, которые находятся поблизости от нее. Именно с этой целью матричные фары соединены с системой ночного видения.

С помощью навигационной системы реализуется адаптивное освещение поворотов. На основе данных навигационной системы, поворот освещается еще до того, как водитель начнет поворачивать руль. Благодаря адаптивному освещению, обеспечивается лучшая видимость и, соответственно, повышается безопасность движения на дороге.

Читать еще:  Как устроиться на работу в такси

Динамический указатель поворотов является управляемым (в направлении поворота) движением огней. Чтобы реализовать эту функцию, тридцать светодиодов последовательно включаются с периодичностью в сто пятьдесят миллисекунд. И, согласно заявлениям производителя, благодаря динамическому указателю поворотов информативность системы освещения транспортного средства существенно повышается.

Светодиодные матричные фары на массовых автомобилях

Они отлично освещают дорогу и, что еще важнее, способны приспосабливаться к условиям движения.

IQ автомобилей растет впечатляющими темпами. Все более способная электроника научилась управлять основными агрегатами машины, от подвески и коробки передач до огромного числа электронных помощников. Особенно поражает скорость, с которой современные решения переходят от наиболее престижных моделей к автомобилям, рассчитанным на самый широкий круг покупателей. Например, год назад мы впервые испытали матричные фары на Audi A8, а сегодня Opel предлагает подобную технологию — IntellilLux -на новой Astra.

  1. ВЫБОРОЧНОЕ ОСВЕЩЕНИЕ
  2. ЭКЗАМЕН ВЫДЕРЖАН
  3. 16 МАЛЕНЬКИХ НЕЗАВИСИМЫХ СВЕТОДИОДОВ

ВЫБОРОЧНОЕ ОСВЕЩЕНИЕ

Задача состоит в том, чтобы сориентировать световой пучок в нужном направлении, то есть обеспечить оптимальную освещенность и при этом не ослепить водителя автомобиля, движущегося навстречу. Решается она с помощью светодиодной матрицы: это несколько маленьких источников света, включением и выключением которых управляет компьютер, с учетом ситуации придающий световому пучку необходимую форму и направление.

По сути, в реальном времени происходит вот что: когда в освещенную фарами зону (размеры которой система также изменяет автоматически) попадает транспортное средство (автомобиль или мотоцикл), отдельные светодиоды выключаются, образуя затемненное пятно, которое следует за автомобилем, движущимся попутно или во встречном направлении. Таким образом, автоматика полностью исключает ослепления, водителей.

Компьютерная программа корректирует работу фар с учетом условий и скорости движения. В городе, пока скорость не превышает 55 км/ч, интенсивность светового пучка и сила света ограничиваются, чтобы в трафике на мешать другим водителям. За городом, где дороги не освещены, фары светят ярче и дальше.

В поворотах включаются светодиоды дополнительного бокового модуля (соответственно, правого либо левого). При этом принимается во внимание угол поворота рулевого колеса, и освещенности вполне хватает, чтобы ехать по серпантину, не опасаясь, что за поворотом чего-то не разглядишь. На магистрали автоматически выключаются светодиоды, которые могли бы ослепить как водителя автомобиля, движущегося навстречу, так и того, кто обгоняет по соседней полосе.

ЭКЗАМЕН ВЫДЕРЖАН

Мы поступили так, как всегда поступаем с техническими новинками: для испытания системы IntelliLux постарались смоделировать ситуации, в которых она должна срабатывать автоматически. Тесты проводились на полигоне в Ваирано поздно вечером на участке, далеком от каких-либо источников освещения — условия неосвещенной загородной дороги.

Нажав кнопку на переключателе указателей поворотов, задействовали активные фары дальнего света и поехали навстречу другим автомобилям. Во всех тестах дальний свет включался точно в момент, когда стрелка спидометра переходила отметку 50 км/ч. С такой же точностью и быстротой светодиоды фар частично выключались, если телекамера на ветровом стекле обнаруживала свет от фар встречного транспорта.

Мы повторили тест несколько раз, изменяя условия: сначала навстречу двигались несколько автомобилей, потом другой автомобиль нас обгонял. Испытатели во встречных автомобилях ни разу не ощутили ослепления, а водитель Astra ни разу не пожаловался на ухудшение видимости. В завершение проверили, как умная электроника отреагирует на появление велосипеда, оборудованного всеми предписанными световыми приборами.

В этой ситуации главное не в том, чтобы не ослепить велосипедиста, который едет гораздо медленнее автомобиля, — важно заметить его в темноте как можно раньше. Обмануть систему не удалось, на велосипедиста она не отреагировала. Тогда мы увеличили интенсивность света закрепленной на велосипедном руле фары до максимума: электроника Opel Astra выключила несколько светодиодов, но это ни на что не повлияло, водитель заметил велосипедиста своевременно. Так что можем с ответственностью утверждать, что IQ у системы IntelliLux выше среднего.

Ночью у водителя больше не будет проблем ни на серпантине, ни в узких поворотах. Одна из функций системы IntelliLux предполагает включение в подобных ситуациях светодиодов дополнительной секции, которые значительно увеличивают размер светового пятна, подсвечивая обычно остающиеся в темноте зоны.

Непонимание того, что ждет тебя за поворотом, нервирует водителя и плохо влияет на безопасность. На Astra мы увидели систему подсветки поворотов нового поколения. В принципе, идея не нова, подобные решения, более или менее «умные», встречаются и на недорогих моделях. В данном случае команда на включение неподвижно закрепленного сегмента светодиодов подается при повороте руля. Функция активна на скоростях до 70 км/ч. Чтобы проверить эффективность работы системы, наш

Испытательный центр воспроизвел подобную ситуацию, установив условное препятствие внутри поворота.

Муляж автомобиля, припаркованного внутри поворота, фары дальнего света едва освещают, а система IntelliLux (большое фото) позволяет увидеть абсолютно четкую картину.

16 МАЛЕНЬКИХ НЕЗАВИСИМЫХ СВЕТОДИОДОВ

В МАТРИЧНЫХ ФАРАХ системы IntelliLux 16 светодиодов, восемь в левой и восемь в правой. Система самостоятельно включает дальний свет, автоматически контролирует силу света и форму светового пятна, учитывая условия движения. Установленная на ветровом стекле телекамера распознает источники света, установленные на попадающих в освещенную дальним светом зону транспортных средствах, и выборочно выключает те или иные светодиоды .

СИСТЕМА оберегает от ослепления и водителей автомобилей, движущихся впереди в попутном направлении: отдельные светодиоды выключаются, образуя затемненную зону. На левом фото активная система выключена: фары Opel явно мешают водителю и пассажирам автомобиля, который едет перед ним. Когда система IntelliLux активна (правое фото), часть светодиодов фар дальнего света остается включенной: дорога видна не хуже, а свет никому не мешает.

В рамках европейской инициативы LightSightSafety Дармштадский университет также протестировал систему. Было доказано, что на скорости 80 км/ч светодиодные фары позволяют заметить объекты на обочине дороги на 30-40 м раньше, чем ксеноновые фары дальнего света.

Если источник света на движущемся навстречу транспортном средстве слаб (как у велосипедов), система на него не реагирует. Свет фар велосипедиста, конечно, ослепит, но он не останется незамеченным. На фару мотоцикла система реагирует так же, как на автомобиль: вокруг создается затемненная зона.

Touareg Exclusive — Светодиодные матричные фары IQ. Light

Светодиодные матричные фары IQ. Light

Никого не ослепляют

Светодиодные матричные фары IQ. Light с системой динамического регулирования света Dynamic Light Assist способны освещать дорогу намного ярче, при этом не создавая помех другим участникам движения. Свет без ослепления практически в любых ситуациях.

Выразительный дизайн доступных на заказ светодиодных матричных фар IQ. Light притягивает взгляды к НОВОМУ Volkswagen Touareg. Помимо основных функций ближнего и дальнего света отдельные содержащие по одному светодиоду сегменты могут благодаря использованию матричной технологии включаться и выключаться, создавая огромное число вариантов освещения в зависимости от ситуации на дороге.

Так, при движении с включенным дальним светом все приближающиеся во встречном или попутном направлении транспортные средства определяются при помощи видеокамеры. Возможность автоматического управления отдельными светодиодными сегментами позволяет двигаться с постоянно включенным дальним светом, но при этом не ослеплять других участников движения. А при приближении к дорожному знаку сегмент, свет от которого падает непосредственно на знак, будет отключен, чтобы избежать ослепления водителя вашего Volkswagen Touareg отраженным от поверхности знака лучом.

В зависимости от того, едет автомобиль по населенному пункту или же за его пределами, осуществляется ли обгон другого транспортного средства в темное время суток на загородной дороге или автомобиль движется по автомагистрали в дождь или снег, варьируются ширина, направление и интенсивность свечения сегментов светодиодных матричных фар IQ. Light, которые адаптируются к любым условиям на дороге. Матричная технология позволяет намного эффективнее освещать дорогу, тем самым способствуя более высокому уровню безопасности и более спокойному вождению — без ослепления и отвлекающих отражений.

Innovision Cockpit

Центр управления из будущего

Дизайн единого экрана объединяет панель и экран навигационной системы в единый футуристичный центр управления. Отсутствие кнопок, удобное управление с помощью прикосновений и жестов, а также различные опции для персонификации усиливают впечатление, предлагая дополнительные возможности по индивидуальному оформлению.

Впервые примененный в Volkswagen и ориентированный на водителя Innovision Cockpit представляет собой цифровую инновационную приборную панель Digital Cockpit и расположенную рядом с ней информационно-развлекательную систему с изогнутой передней панелью из стекла (так называемый изогнутый дисплей). Система обеспечивает максимальное удобство: ей можно управлять с помощью касаний, жестов и голосовых команд без применения механических переключателей, кнопок и других традиционных способов управления. Огромная поверхность экрана используется для отображения множества функций. Вы можете настроить «домашний» экран, закрепив на нем любимые фото и наиболее часто используемые функции. Возможность масштабирования позволяет увеличить многие приборы, что невозможно сделать для стандартных спидометров и экранов.

Цифровая приборная панель Innovision Cockpit состоит из цифровой приборной панели и информационно-развлекательной системы Discover Premium с функцией навигации. Их дополняют интерфейс для подключения мобильного телефона Business с возможностью беспроводной зарядки и четыре USB-порта. В систему интегрировано приложение App-Connect, которое используется для переноса приложений с вашего смартфона на большой сенсорный экран. Система поддерживает все три основные технологии: MirrorLink®, Apple CarPlay™ и Android Auto™. Во время поездки ваши пассажиры через свои планшеты или смартфоны также смогут находить информационные и развлекательные программы. Приложение Volkswagen Media Control позволяет выбирать музыкальный канал с задних сидений или удаленно управлять навигационной системой с сиденья переднего пассажира. Спереди и в задней части салона расположены USB-порты, предназначенные для зарядки мобильных устройств и для передачи данных.

Проекционный дисплей Head-up

Внимание только на дороге

Ваши глаза направлены на дорогу, но вы все равно в курсе самого важного и не упускаете ни одной существенной детали. Все это — благодаря проецированию скорости, информации навигационной системы и ассистирующих систем на ветровое стекло.

Все очень просто: проекционный дисплей, предлагаемый на заказ, использует ветровое стекло в качестве экрана для отображения важнейшей информации. Скорость, сообщения ассистирующих систем или подсказки навигации — вы всегда будете в курсе дел, не отвлекаясь при этом на панель приборов или экран навигатора. При использовании подсветки изображение становится еще более четким, а в случае необходимости местоположение на стекле можно скорректировать.

Пневматическая подвеска

Всегда на нужной высоте

Пневматическая подвеска2 НОВОГО Volkswagen Touareg Exclusive адаптирует дорожный просвет автомобиля к любым дорожным ситуациям.

Кузов можно поднять и зафиксировать на увеличенном до 258 мм дорожном просвете. А для облегчения погрузки и разгрузки багажника заднюю часть кузова можно опустить относительно стандартного положения на 50 мм.

Пневмоподвеска в буквальном смысле обеспечивает высочайший уровень комфорта в движении. Вне зависимости от того, какой режим вождения Вы выберете — COMFORT, NORMAL или SPORT, — Volkswagen Touareg позволит Вам самостоятельно решать, какой будет поездка. Кроме этого, кузов можно поднять и установить увеличенный до 300 мм дорожный просвет. Более того, для облегчения погрузки и разгрузки заднюю часть кузова можно опустить относительно стандартного положения на 50 мм.

Сиденье ergoComfort

18 возможностей расслабиться

Передние сиденья ergoComfort c функцией активной вентиляции и массажа подстраиваются под индивидуальные потребности водителя и переднего пассажира.

Сиденья ergoComfort обеспечивают комфорт вне зависимости от продолжительности вашего путешествия и дороги, по которой оно проходит: извилистого серпантина или монотонной автомагистрали. Благодаря возможности регулировок по 18 направлениям, вы можете конфигурировать сиденья с учетом индивидуальных потребностей водителя и переднего пассажира, в том числе настраивать боковую поддержку, длину подушки, а также высоту сиденья и глубину посадки. Поясничная опора с электрическими регулировками помогает избежать напряжения мышц спины. Сиденья также оснащены функциями подогрева и вентиляции, создающими идеальный комфорт в холодную или жаркую погоду, опционально — функцией массажа с 8 режимами работы.

Какие 4 вида фар можно встретить на новых авто в 2019 году?

Ещё недавно на всех автомобилях производители устанавливали только галогенные фары, они просты по конструкции, и лампочки для них стоят очень дёшево, но вот светят они довольно посредственно. Поэтому инженерам пришлось взяться за разработку более ярких фар, которые смогли бы лучше освещать ночную дорогу. Разберём основные типы головной оптики, которую сейчас устанавливают на новые автомобили.

Классические фары

Галогенные фары по-прежнему выпускаются, но их устанавливают в основном на бюджетные автомобили или на базовые комплектации. Впервые этот тип фар появился в начале 60-х годов прошлого века и с тех пор постоянно дорабатывался, чтобы увеличить срок службы лампочек и сделать их ярче. По сегодняшним меркам свет от галогенных фар считается откровенно слабым, хотя и вполне достаточным для безопасной езды в ночное время.

Читать еще:  Обзор Mazda 2 седан

Ксеноновые фары

Газоразрядный ксенон пришёл к российским автомобилистам в виде комплектов для тюнинга галогенных фар, ведь купить себе новую машину с такими фарами могли позволить лишь немногие. Большинство автомобилистов устанавливали в свои фары нештатный ксенон, что приводило к ослеплению встречных водителей. Сейчас такие комплекты запрещены к установке. Но газоразрядные ксеноновые фары стали более доступны, теперь их устанавливают не только на премиальные автомобили. Такие фары светят намного ярче галогенных, выдавая голубоватый свет. Они практически не нагреваются и работают в несколько раз дольше обычных ламп. Но есть у этих фар и минус. Ксенон значительно увеличивает стоимость машины и не только из-за более сложной конструкции фар, но и из-за обязательного наличия омывателя для фар.

Светодиодные фары

LED-оптика довольно молодая, впервые появляться на автомобилях она начала лет десять назад. Пионерами в этой области выступила компания Lexus, которая начала устанавливать такие фары на свой премиум-сегмент. В настоящее время светодиодные фары являются неким стандартом и устанавливаются даже на машины гольф-класса. На простых машинах ставят обычные LED-лампы. А вот в дорогих моделях к ним подсоединяют моторизованные подвесы, что позволяет перемещать лампы в сторону поворота руля. Светодиоды светят ярким белым светом, при этом совершенно не выделяют тепла и способны работать долгие годы.

Лазерные фары

Самой последней разработкой в области автомобильной оптики можно назвать появление лазерных фар. Пока они доступны исключительно на премиальных машинах, таких как Lexus, Audi, Porsche. Матричные лазерные фары обеспечивают самое лучшее качество освещения дороги, но главным достоинством является возможность автоматизировать их работу. Например, они могут менять яркость при приближении встречных автомобилей, чтобы не ослеплять водителей. Лазерные фары обладают поразительной дальнобойностью, они могут освещать дорогу на 600 метров вперёд, для сравнения, дальнобойность ксенона — всего 300 метров. Естественно, что такие сложные фары стоят очень дорого, поэтому не стоит ждать их скорого появления на обычных машинах.

Матричные фары – принцип работы, преимущества и недостатки

В последние годы автомобильная оптика стала гораздо совершеннее. Фары теперь представляют собой не просто лампу с отражателем, а высокотехнологичное устройство, способное выполнять множество функций. Кроме того, всё чаще в них используют яркие светодиоды.

Одна из разновидностей – матричные фары, наиболее совершенный продукт автомобилестроения на сегодняшний день. Впервые они были применены компанией Audi, и её разработки остаются самыми передовыми в этой области.

Благодаря этой технологии вождение в тёмное время суток становится гораздо комфортнее, а безопасность поднимается на новый уровень.

Матричная оптика и ее особенности

Главная особенность матричной фары – использование светодиодов. В ней совсем нет ни ксеноновых, ни галогеновых ламп. На светодиодах работает и дальний, и ближний свет, и указатели поворотов. У разных производителей они могут располагаться по-разному, форма корпуса также бывает разной, но принцип одинаков, и матричные фары невозможно спутать с обычными – у них оригинальный дизайн, и разделение матриц чётко видно.

Особенностью такой конструкции является и её возросшая функциональность. Управляется освещение с помощью освещения, в этом процессе участвует и бортовой компьютер. Используются всевозможные датчики – поворота руля, дождя, освещения, навигационная система, и даже видеокамера.

На основе полученных данных управляющий блок сам принимает решение, как лучше осветить дорогу. Например, при повороте больше света направляется в сторону поворота, а при обнаружении идущего впереди человека он освещается сильнее и становится заметнее. Видеокамера фиксирует встречные автомобили по свету фар и подстраивает освещение таким образом, чтобы оно не било в глаза водителям, но остальные зоны освещаются по-прежнему ярко.

Если используется бортовая навигационная система, то в расчет идут и данные о местности – рельеф, трасса или населенный пункт, и многое другое.

В матричных фарах нет поворотных элементов. В них группы светодиодов заранее расположены оптимальным образом. Уровень света в какой-либо зоне перед автомобилем меняется с помощью изменения яркости определенной светодиодной группы. Это позволяет, например, ярко освещать дорогу, не ослепляя при этом водителя встречного автомобиля.

Как устроена матричная фара

Конструкция самой фары такого типа состоит из отдельных модулей – дальнего света, ближнего света, указателей поворота, габаритов. Всё это оформлено в единый блок, форма которого зависит от конструкции автомобиля и дизайнерских решений.

В каждом модуле используются группы светодиодов. Например, в секции дальнего света их может быть 25 штук, сгруппированных по 5 штук. У каждой группы есть собственный отражатель и радиатор для охлаждения.

Модуль ближнего света тоже состоит из блоков светодиодов, и расположен обычно выше модуля дальнего света. Блок поворотов и габаритов располагают снизу. Спереди фара закрывается прозрачным рассеивателем.

В корпусе фары расположена электроника блока управления и вентилятор с воздуховодом для охлаждения светодиодов.

В новейших моделях Audi используются матрично-лазерные фары. В такой конструкции источником света служит лазер. Его луч, проходя через специальную линзу, покрытую особым флуоресцентным составом, приобретает белый свет, и становится безопасным для глаз. Но мощность такой фары во много раз больше ксеноновой и даже светодиодной. Дальнобойность её может достигать 600 метров против 300 метров для светодиодной и 100 метров для обычной.

Матрично-лазерная фара не только прекрасно освещает дорогу. Она может, как и обычная матричная, избирательно создавать теневые зоны, например, для встречных автомобилей. Кроме того, она может регулировать створ луча. Например, при движении по трассе на большой скорости луч становится уже, свет сконцентрирован в более узком пучке, светит дальше и ярче. При медленном движении, например, по населенному пункту, луч расширяется, захватывая больше окружающей местности.

Разновидность функций освещения в матричной оптике

Сложное устройство фар позволяет им выполнять множество функций. Матричные фары, как светодиодные, так и лазерные, обеспечивают:

  • Дальний свет, который можно не переключать, если навстречу двигаются другие автомобили. Для них создаются теневые зоны, и водители не ослепляются. Такая зона создается и для автомобиля, расположенного впереди. При этом остальное пространство освещается с прежней яркостью, и видимость не уменьшается.
  • Ближний свет обычного вида, когда боковые сектора и обочина освещаются сильнее, а луч света опускается вниз.
  • Адаптивное освещение, которое подстраивается в зависимости от манёвра. Например, при повороте задействуются дополнительные боковые светодиоды, улучшающие видимость сбоку. Кроме того, луч света в последних моделях может поворачиваться при плавных изгибах дороги, подсвечивая опасные места.
  • Всепогодное освещение, которое меняет свою интенсивность на основе данных от различных датчиков. Движение в дождь, туман, пургу, становится гораздо безопаснее и комфортнее.
  • Подсвечивание пешеходов и знаков основано на данных с видеокамеры. Фары сигнализируют трехкратным изменением яркости, предупреждая людей и животных, оказавшихся на опасном расстоянии от автомобиля.
  • Динамический указатель поворотов гораздо лучше показывает направление манёвра, чем обычный. «Бегущие огни» из 30 светодиодов заметны издалека, привлекают внимание и информативнее.

Как видите, матричные фары гораздо удобнее в пользовании, чем обычные. Они избавляют водителя от ручного переключения дальнего и ближнего света, обеспечивают лучшую видимость в любых условиях, а для окружающих не создают неудобств.

Преимущества и недостатки матричной оптики

Большим плюсом нового типа фар является удобство, интеллектуальное управление, повышенная безопасность в темное время суток или при плохих погодных условиях. Расположенные матрицами светодиоды обеспечивают более яркий свет в нужном направлении. Всё это, конечно, нравится водителям.

Но у матричных фар есть один большой недостаток – стоимость. Они могут стоить тысячи и десятки тысяч долларов за штуку. Стоит только нечаянно стукнуть и придётся покупать очень дорогостоящую деталь, притом её придётся заказывать у производителя. Кроме того, при выходе из строя даже одного светодиода придётся менять всю фару. Хотя производитель и даёт гарантию в 10 лет, но это может случиться.

Несмотря на это, функционал матричных фар настолько превосходит обычные, что всё больше автопроизводителей внедряют эту технологию на своих автомобилях. Со временем, возможно, и цена на них заметно снизится.

Газ или светодиоды? Что такое матричные фары и чем они лучше ксеноновых

До сих пор фары делились на две большие группы: галогенные и ксеноновые. В галогенной лампе вольфрамовая нить помещена в колбу с галогенным газом (йод, бром), за счет чего поднимается яркость ее свечения. Такие фары устанавливаются на подавляющее большинство автомобилей.

Ксенононовые фары принципиально отличаются по конструкции. В них светится газ под высоким давлением в колбе из кварцевого стекла с электродами из вольфрама. Основной поток света излучается плазмой возле катода. Не удивительно, что при работе лампы колба значительно нагревается. Такие фары обладают низким КПД, но выдают яркий поток белого света, близкий по спектру к дневному.

Милион комбинаций

Матричные фары — это настоящий прорыв и технологическая революция в мире автопроизводителей. Они построены на новых принципах и в качестве светимого элемента используют светодиоды. Из «лампы» излучают свет совсем не так как ксенон. Диод состоит из полупроводникового кристалла. В момент прохождения электрического тока в результате сложного процесса в нем образуются фотоны света. Диод не нагревает плазму, а излучает фотоны во время перехода энергии через полупроводник. Поэтому температура диода не повышается и для образования света он тратит минимум энергии. На основе множества светодиодов и создаются матричные фары.

Если ксеноновые фары имеют лишь несколько режимов работы, то матричные прожектора способны воспроизвести до миллиона комбинаций освещения дорожного полотна.

Благо пришлось познакомиться с ними вблизи. Подобные фары ставятся на ряд моделей премиальных брендов. Есть они и в арсенале Land Rover. Матричные фары идут, к примеру, на внедорожник Range Rover Velar. Вместе с ним мы и познакомились с возможностями новой техники.

Белый прожектор

Матричные фары определяются просто. Если подойти к ним и поставить в сантиметре ладонь или черный предмет с плоской площадкой, то на поверхности будет отражаться несколько световых пучков ярко-белого цвета. Это лучи светодиодов, расположенных внутри фары и формирующих светоиспускаюшую матрицу. Она состоит из нескольких блоков.

К примеру, автомобиль едет по загородной трассе в полной темноте в лесу и вдали от населенных пунктов. Тогда матрица включает максимальную мощность, и фары освещают дорогу, как военные прожектора системы противовоздушной обороны. Белые лучи матричных фар не настолько белые, как у ксеноновых, отчего не теряются и не блекнут в пыли в окружающей дымке. Свет по своему спектру таков, что не поглощается листвой и хорошо пробивает темноту леса. Когда смотришь вперед, то видишь отчетливые границы освещенной зоны, которая далеко залезает на обочину, поднимается по стволам деревьев и превращается впереди в серую белесую арку.

Путешествуя на Velar, видишь дорогу примерно метров на 200 вперед. За рулем перестаешь чувствовать то напряжение, что обычно присутствует, когда тусклые галогеновые фары светят под нос машины. Но вот впереди появляется встречный автомобиль. Камера в основании внутрисалонного зеркала замечает огни, проводит их анализ и вычисляет траекторию движения приближающейся машины. Видно, как лучи расходятся в стороны и на месте несущегося навстречу автомобиля образуется область тени. Машина закрывается черным прямоугольником. Зато обочины и дорога по ходу движения остаются по-прежнему освещены дальним прожектором. Ничего лучше и представить невозможно.

Причем за время нашего 1000-километрового пробега ни один встречный автомобиль не моргнул нам в просьбе переключиться на ближний. Матричные фары не слепили водителя.

Подсветка пешеходов

Ближний свет матрицы устроен немного по-другому. Модуль с вентиляцией состоит из 30 светодиодов, которые разбиты уже на 6 групп. Размещается модуль внизу основной фары, вместе с полоской дневных ходовых огней и динамических поворотников. Они не следят за встречным транспортом, однако тоже способны на чудеса.

В общем, матрица из 30 светодиодов позволяет адаптировать световой поток в зависимости от обстановки. Возможности матричных светодиодных фар безграничны. Программисты не придумали еще такое количество алгоритмов их использования, чтобы загрузить потенциал фар хотя бы наполовину.

Правда матричные фары имеют существенный недостаток. Они еще дороги, хотя и наметился устойчивый тренд в сторону их удешевления. То, что увидено нами на Velar, вскоре будет применяться повсеместно. Эксперты отмечают, что в массовом сегменте такие фары начнут активно использоваться уже через 5-7 лет.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector